Step of Proof: equiv_rel_self_functionality
12,41
postcript
pdf
Inference at
*
I
of proof for Lemma
equiv
rel
self
functionality
:
T
:Type,
R
:(
T
T
).
EquivRel(
T
;
x
,
y
.
R
(
x
,
y
))
{
a
,
a'
,
b
,
b'
:
T
.
R
(
a
,
b
)
R
(
a'
,
b'
)
(
R
(
a
,
a'
)
R
(
b
,
b'
))}
latex
by Unfold `guard` 0
latex
1
:
1:
T
:Type,
R
:(
T
T
).
1:
EquivRel(
T
;
x
,
y
.
R
(
x
,
y
))
(
a
,
a'
,
b
,
b'
:
T
.
R
(
a
,
b
)
R
(
a'
,
b'
)
(
R
(
a
,
a'
)
R
(
b
,
b'
)))
.
Definitions
{
T
}
origin